Structure Reports

Online
ISSN 1600-5368

Franz Dornhaus, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11,
60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.096$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diphenylphosphenium bromide

The structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{P}^{+} \cdot \mathrm{Br}^{-}$, is composed of discrete cations and anions, which are both located on a crystallographic mirror plane. The angle between the two phenyl rings is $69.18(11)^{\circ}$. The crystal packing is stabilized by $\mathrm{P}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Comment

In contrast to the well established tetraalkyl and tetraaryl phosphenium salts, $R_{4} \mathrm{P}^{+} \cdot X^{-}$, only a few phosphenium cations with a $\mathrm{P}-\mathrm{H}$ bond are known. Information regarding the structure and reactivity of these molecules is thus still rather limited. Up to now, only two examples of the type $R_{2} \mathrm{PH}_{2}{ }^{+} \cdot X^{-}$ have been structurally characterized by X-ray crystallography: $R=\mathrm{Me}$ and $X=\mathrm{AlCl}_{4}$ (Aubauer et al., 2000), and $R=\mathrm{Ph}$ and $X=\mathrm{GeCl}_{3}$ (Apostolico et al., 2004). We report here the synthesis and the X-ray crystal structure analysis of the phosphenium bromide, $\mathrm{Ph}_{2} \mathrm{PH}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, (I).

Br^{-}
(I)

The synthesis of (I) was achieved as indicated below.

$$
\mathrm{Ph}_{2} \mathrm{PH}+\mathrm{HBr} \xrightarrow[\text { (heptane) }]{ } \quad \mathrm{Ph}_{2} \mathrm{PH}_{2}^{+} \mathrm{Br}^{-}
$$

A perspective view of (I) is shown in Fig. 1. The structure is composed of discrete $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{P}^{+}$cations and Br^{-}anions, both located on a mirror plane. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; MOGUL Version 1.0; Allen, 2002). The dihedral angle between the two phenyl rings is $69.18(11)^{\circ}$. The Br^{-}anions connect the cations via short $\mathrm{P}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds into chains running along the crystallographic b axis. Each pair of parallel chains is connected by additional

Received 18 January 2005
Accepted 20 January 2005 Online 29 January 2005
\qquad

Figure 1
Perspective view of the title compound, showing the atom numbering and displacement ellipsoids at the 50% probability level. $\mathrm{P}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding is shown as dashed lines.

Figure 2
Packing diagram of the title compound, viewed on to the $a c$ plane. H atoms bonded to C atoms have been omitted for clarity and $\mathrm{P}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonding is shown as dashed lines.
$\mathrm{P}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds. The hydrogen bonds lying parallel to the b axis are significantly shorter than those connecting two parallel chains (Table 1). In addition, the $\mathrm{P}-$ $\mathrm{H} \cdots \mathrm{Br}$ angle for the latter of $95.8(2)^{\circ}$ indicates that this should be a very weak interaction.

Experimental

An excess of HBr was added to a mixture of $8.6{\mathrm{mmol} \mathrm{Ph}_{2} \mathrm{PH} \text { and }}^{2}$ 3 ml heptane at 77 K . The reaction mixture was warmed up and then stirred for two hours at room temperature. Colourless crystals of (I) were grown by storing this solution at ambient temperature for 2 d .

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{P}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=267.10$
Monoclinic, $C 2 / m$
$a=16.778$ (2) A
$b=7.4093$ (7) \AA
$c=9.8472(11) \AA$
$\beta=106.097$ (9) ${ }^{\circ}$
$V=1176.1$ (2) \AA^{3}
$Z=4$

$$
D_{x}=1.508 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8625
reflections
$\theta=3.7-25.7^{\circ}$
$\mu=3.59 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.36 \times 0.13 \times 0.12 \mathrm{~mm}$
Data collection
Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan (MULABS; Spek, 2003;
Blessing, 1995)
$T_{\text {min }}=0.347, T_{\text {max }}=0.652$
8687 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.096$
$S=1.08$
1222 reflections
77 parameters
H atoms treated by a mixture of independent and constrained refinement

1222 independent reflections
1139 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=25.8^{\circ}$
$h=-20 \rightarrow 20$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0516 P)^{2}\right. \\
& \quad+0.2407 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.97 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{P} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	$1.19(4)$	$2.74(4)$	$3.7782(4)$	$145(2)$
$\mathrm{P} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{i}}$	$1.19(4)$	$3.01(3)$	$3.3410(10)$	$95.8(18)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}-y,-z$.

All H atoms were located in a difference electron-density map and those bonded to C atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$] using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$. The H atom bonded to P was freely refined.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Apostolico, L., Mahon, M. F., Molloy, K. C., Binions, R., Blackman, C. S., Carmalt, C. J. \& Parkin, I. P. (2004). Dalton Trans. pp. 470-475.
Aubauer, C., Davidge, K., Klapötke, T. \& Mayer, P. (2000). Z. Anorg. Allg. Chem. 2000, 626, 1783-1786.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

